
MATFORCE: SUPPORTING RAPID ALGORITHM DEVELOPMENT BY
AUTOMATED TRANSLATION OF MATLAB PROTOTYPES INTO C++

Levente Hunyadi
Budapest University of Technology and Economics
Department of Automation and Applied Informatics
1111 Budapest, Magyar tudósok körútja 2., Hungary

e-mail: hunyadi@aut.bme.hu

ABSTRACT
MatLab is an essential tool in high-productivity develop-
ment of applications that involve much scientific computa-
tion. Problems can be presented in a familiar mathematical
formalism and the simple yet extensive visualization ca-
pabilities support rapid algorithm and model prototyping.
Nonetheless, for the sake of efficiency and homogeneity
with other parts of the code, it is often necessary to convert
MatLab code into C or C++, which is a tedious and error-
prone task if performed manually. The author presents a
tool named MatForce that automatically converts MatLab
scripts into C++ code, producing human-readable, extensi-
ble C++ sources that can subsequently be fitted to the needs
of the encapsulating application.

KEYWORDS
programming tools and languages, developing compu-
tation-intensive algorithms, source-to-source compilation,
automatic type inference

1 Introduction

MatLab is the de-facto language of technical computing, it
allows programmers to write algorithms in familiar math-
ematical notation as well as visualize their results in a
straightforward manner. On one hand, MatLab has built-in
support for matrix operations and a myriad of mathemati-
cal functions ranging from trigonometric functions to fast
Fourier transformation. On the other hand, data can be dis-
played graphically and interactive tools allow manipulating
graphs to achieve results that reveal the most information.
Both of these aspects contribute to ease of use and quick
initial discovery of potential pitfalls. However, beyond the
initial prototyping phase, one is often faced with the need
to integrate the developed algorithms into an existing ap-
plication, often with subtle changes.

Performance is another strong motivation behind code
translation. As MatLab is an interpreted language, its raw
speed is vastly inferior to such compiled programming lan-
guages as C or C++.1 Albeit MatLab uses highly opti-
mized matrix algebra and mathematical function libraries,

1Just-in-time compilation can, in part, increase execution speed by
compiling to machine code on the fly. Aggressive optimization, however,
is scarcely possible.

extra processing associated with executing individual Mat-
Lab statements incurs a relatively large processor footprint,
which is apparent especially in the case of programs that
contain many control flow statements such as conditionals
and loops.

In order to ease integration and lessen computation
overhead, MatLab ships with a compiler that automatically
converts MatLab code (so-called m-files) into C or C++
shared libraries. While exhibits a speed gain as compared
to directly interpreted code, this approach has several limi-
tations:

• Loss of type safety. The libraries expose their interface
through C header files that use intricate MatLab-style
arrays, which are not intuitive when used in the host
application.2 In general, very little attempt is made
to use native C types. As MatLab itself is a dynami-
cally typed language3, there is little provision for type
safety when invoking compiled MatLab functions.

• External dependence. The shared libraries rely on
an external, relatively heavy-weight library called the
MatLab Component Runtime (MCR), which must
also be installed on the end-user’s computer.

• Loss of extensibility. Albeit C or C++ header files are
generated during the compilation phase, function defi-
nitions in m-files are translated into binary rather than
source code. As a result, compiled files are no longer
editable to be extended with additional functionality
that may not have been possible at the MatLab level.

In order to remedy the outlined limitations, the author de-
scribes MatForce [4], an open-source tool comprising of
a compiler and a utility library, which translates MatLab
code into human-readable C++ source code. The com-
piler4 features a simple yet powerful type inference algo-
rithm that uses primitive as well as compound types in com-
piled code. The resultant C++ code is dependent only on

2By host application we mean the application, in our case written in C
or C++, that encapsulates and invokes the compiled MatLab code in order
to do a given computation.

3Or, as more commonly but less precisely known, typeless language.
4Unless otherwise noted, the term compiler refers to the MatForce

compiler implemented by the author. In order to disambiguate the Mat-
Force compiler from the C++ compiler, the latter is always referred to as
such.



the utility library that contains definitions for various ma-
trix types, shapes and operations (such as product of two
double-precision matrices or Fourier-transform of a vec-
tor), which makes compiled code succinct and sufficiently
abstract. The utility library links against freely available
BLAS and LAPACK [7] linear algebra routines written
in Fortran but no other third-party libraries. As a result,
the compilation process yields intuitive, type-safe, high-
performance C++ source code, which the programmer can
modify at will without relying on external heavy-weight li-
braries.

The proposed system has been successfully used in
developing a UTRAN link capacity dimensioning algo-
rithm in a mobile telecommunication network design tool.

The rest of the paper is structured as follows. Sec-
tion 2 gives the motivation for using type inferring code
translation as opposed to other approaches and surveys re-
lated work. A brief introduction to Prolog and DCG rules,
both of which the compiler makes intensive use of, is given
in Section 3. Sections 5, 6 and 7 deal with the details of the
MatForce compiler, the utility library and the (external) lin-
ear algebra library, respectively. The paper ends with Sec-
tion 8, which summarizes results and drafts possible future
work. The reader is assumed to have a basic knowledge of
the MatLab language.

2 Related work

There have been attempts at increasing MatLab perfor-
mance by means of partial evaluation [9], just-in-time com-
pilation [6], parallelization [11], direct compilation [10]
and type estimation [12, 2].

Partial evaluation is a technique for program opti-
mization by specialization, constraining code to a partic-
ular set of possible inputs, producing the so-called residual
program. The MatLab partial evaluator described in [9]
transforms a MatLab abstract syntax tree into a simpler but
equivalent form by deducing type, shape and value range
information from expressions, evaluating static subexpres-
sions and eliminating dead code whenever possible as well
as unrolling loops. This partial evaluation can substantially
increase performance but produces MatLab code and hence
can only serve as a possible preprocessing step in our sce-
nario.

MaJIC [6] is a just-in-time compiler targeted at speed-
ing up MatLab execution in an interactive environment.
The compiler comprises three constituents: an analyzer
that annotates code, a very fast code generator and a code
repository that caches compiled code. Despite its effective-
ness due to preallocating temporary arrays, eliminating un-
necessary temporaries and unrolling loops, the just-in-time
scheme is heavily dependent on run-time information and
is therefore not suited to our needs.

Direct compilation speeds execution by translating to
a compiled language such as C or C++ but by using a dy-
namic typing scheme. As such, it is a simple approach
that may significantly speed execution by compiling con-

trol structures but it does not address type safety, nor can
it exploit the speed gain from type specialization. Never-
theless, compiled code can bear close resemblance to the
original, facilitating future extension.

In the case of type estimation (or type inference),
variables are assigned well-defined types, allowing code
to be translated into a strongly-typed language. As a re-
sult, type inference combined with code translation meets
our demands both in terms of speed and type safety. Not
only does type inference enable aggressive optimization of
generated C++ code (by allowing cross-optimization be-
tween hosting application and MatLab algorithm) but also
decreases the heterogeneity of a complex system by mak-
ing it possible to use a single programming language.

In [12] a type estimator written for the Octave [8] lan-
guage is described, which is very similar to MatLab in syn-
tax and semantics. The type estimation scheme is based
on flow graphs to guess the intrinsic type, size and value
range of Octave matrices in an iterative process. This in-
formation is stored as a triplet and attached to each variable
in an Octave program. Once the Octave program is anno-
tated, a corresponding C++ program can be generated. In
[12], both the type estimator and the generated code are
dependent on the Octave runtime, an equivalent of MCR.
The approach presented here, apart for being independent
of the Octave (as well as the MatLab) run-time, is differ-
ent in the sense that it traverses the abstract syntax tree that
represents the program only once; it does not infer matrix
size or value range, which are often difficult to determine
for higher-level functions; it leaves more of operator dis-
ambiguation to the C++ compiler; and it puts emphasis on
generating efficient yet human-readable C++ source code,
such as by extensive use of iterators and pass-by-reference,
which are out of scope of [12].

[2] describes a code synthesis tool that is also based
on type estimation. The tool transforms MatLab code into
equivalent C code (possibly merging with existing code),
while taking care of memory allocation, array indexing as
well as function and operator polymorphism, and the re-
sults are presented in an interactive environment. While
the goals of this commercial product are similar to those
presented here, it produces C rather than C++ code, the
former of which lacks language support for features such
as class inheritance and polymorphism, which enable re-
sultant code to have a higher level of abstraction.

3 Background

The MatForce compiler is written entirely in Prolog. Pro-
log [14] is a general-purpose declarative programming
language often associated with artificial intelligence and
computational linguistics. It is especially suited to com-
piler construction because it allows easy specification of
BNF grammars and formulation of relationships are rules.
Declarative features such as single-assignment ensure min-
imal interdependence and simple fabrication of unit tests.
Built-in auxiliary services, such as indexing (automatic



hashing on arguments) produces fast code without much in-
tervention. Indeed, the source code of the entire MatForce
compiler consists of less than 2500 lines of code, including
MatLab and C++ operator and function declarations that
take up a significant portion of code.

Prolog is weakly-typed, it has a single data type,
which is term. Terms are either atoms, numbers, compound
terms or variables. Atoms correspond to strings in most
computer languages. Compound terms comprise a functor
and a fixed number of positional arguments. The functor
is a pair consisting of an atom that serves as the name of
the term and an integer (called arity) that gives the num-
ber of arguments. For instance, integer(2) is a compound
term that has the functor integer/1 and the single argument,
which is the number 2. Atoms are special terms that have
zero arity. Prolog variables are single-assigned: once they
have been given a value through a process called instanti-
ation, they are indistinguishable from whatever value they
have been assigned. In program code, the name of variables
is always capitalized. Lists have special importance in Pro-
log. A list is a recursively defined structure which is either
the atom [], which denotes the empty list, or a compound
term with two arguments, the first representing an item and
the second the continuation, or tail in Prolog terminology,
denoted as [Head|Tail].

Prolog programs consist of rules (also called pred-
icates), which describe relations. Rules have the form:
Head :- Body, where Head is a (possibly compound) term
that is roughly the declarative equivalent of function sig-
natures in imperative languages, while Body is a conjunc-
tion of other predicate calls. Unlike imperative program-
ming languages, executing a Prolog rule can have any of
the three possible outcomes: success, failure or error, the
latter of which corresponds to exceptions. A rule succeeds
if all calls in its body succeed, or it fails otherwise.

In terms of procedural semantics, a Prolog program
is executed by specifying a goal (called the query), which
consists of typically a single term. The Prolog engine at-
tempts to unify the query term with the head of a predicate,
scanning the program code top to bottom. If successful,
the body is executed, or the goal fails otherwise. Execution
of the body is done recursively as if each call it consists
of were specified as a separate query one after the other
with proper context information. A major difference com-
pared to imperative languages is that a query can succeed in
multiple ways because more than one head can match the
query if they have the same signature. In each case when
there are multiple matching heads, a choice point is gener-
ated. In case failure occurs, execution backtracks to the last
choice point (undoing any variable instantiations since that
choice point), from where execution is continued.

Let us take the simple example in Figure 1. Given
the query keyword(K), we get the results break, continue,
etc. (keyword/1 generates choice points and multiple re-
sults are obtained by backtracking). Similarly, the query re-
served(R) yields all keywords and symbols (note the iden-
tical heads, and the bodies, the latter of which are single-

keyword(break).
keyword(clear).
keyword(continue).
...
symbol(’(’).
symbol(’)’).
...
reserved(Item) :- keyword(Item).
reserved(Item) :- symbol(Item).

Figure 1. A sample from the Prolog definition of the
MatLab language in MatForce.

element conjunctions); reserved(integer(2)) fails and re-
served(break) succeeds (arguments are passed as in other
languages but notice that it is possible to pass entire terms).

An extremely useful feature intrinsic to Prolog is the
definite clause grammar (DCG) [13] formalism. DCG rules
allow fast and effective coding of tokenizers, parsers and
code generators. A DCG rule has the following form,
bearing close resemblance to BNF rules: Head --> Body,
where Head is a regular predicate head and Body is made
up of DCG terms. Each DCG term may either be a list
of token terms (enclosed in brackets), a DCG predicate or
a regular Prolog predicate call (enclosed in curly braces).
The first argument of Head is generally an abstract syntax
tree which results from parsing the specified token terms
and evaluating the intermitting calls.

digit(C) -->
[C], { C >= 0’0, C =< 0’9 }.

digits([H|T]) -->
digit(H), digits(T).

digits([]) --> [].
number(Number) -->

number_digits(Digits),
{ number_codes(Number, Digits) }.

Figure 2. A sample from the MatForce tokenizer.

Consider the excerpt from the MatForce tokenizer
in Figure 2, which has been slightly modified for clarity.
Here, digit extracts a single digit from a stream of char-
acters in the range 0–9, digits extracts as many digits as
possible, while number converts the series of digits into an
integer. Notice how the digit list is built implicitly in the
head of digits.

4 Overview

The MatForce system comprises of three easily identifiable
parts. The compiler performs the MatLab to C++ trans-
lation with type inference, yielding C++ code. The utility
library contains the implementation of matrix operations.
The C++ compiler translates both the utility library and
the C++ source code produced by the MatForce compiler
into object files. The linker binds the object files to the
high-performance linear algebra library, which carries out
computation-intensive operations. (Figure 3)



MatLab
source

MatForce
compiler

MatLab
source

compiled
to C++

C++ utility
library
source

(*.h, *.cpp)

C++
compiler

object
code
(*.o)

hybrid
LAPACK

library
(lapack.dll)

linker

Figure 3. The MatLab to C++ compilation and link process

5 The compiler

The MatLab code compiler, written in SWI-Prolog5 [5], is
the major constituent of the system. Compilation is done in
four stages: tokenization, parsing, type inference and code
generation.

Tokenization At this stage, m-files are read and con-
verted into a stream of tokens by means of predicates simi-
lar to those shown in Section 3. The term token may re-
fer to an integer, a real number, a keyword, a string, a
literal, a symbol (which corresponds to a MatLab oper-
ator), a comment or a newline. Keywords and symbols,
which are built-in MatLab constructs, are represented by
Prolog atoms, while other tokens are represented as single-
argument terms. Line folding is also performed at this
stage. Tokenization uses some but little context informa-
tion.6

Parsing During the parsing process, tokens are inter-
preted in their context and an abstract syntax tree is built.
Each m-file contains one or more functions, each of which
comprises multiple statements. A statement may be a con-
trol statement (return, break, global etc.), an assignment,
an if, a while or a for statement, or a function call. The ex-
act semantics of each statement is defined by means of the
DCG formalism. For instance, a while statement is defined
as in Figure 4.

The DCG rule in Figure 4 states that a while state-
ment begins with the while keyword (Line 2) and is fol-
lowed by an expression (Line 3) of conditional (boolean)
type (Line 4). The while statement wraps a group of other
MatLab statements (Line 6) and the group is terminated
by the end keyword (Line 7). Line 9 defines the abstract

5SWI-Prolog is an ISO-compliant Prolog system. As the special fea-
tures of SWI-Prolog are exploited only to a very limited extent, the source
code is expected to be easily portable.

6MatLab uses ’ (apostrophe) both as a string terminator and as the con-
jugate transpose operator, which have to be distinguished. An apostrophe
is interpreted as a postfix operator after a literal, but as a string starter
character in any other context (because it starts an operand).

(1) while(Context, NewContext, Loop) -->
(2) [while],
(3) expression(Context, Context1,

Conditional, Types),
(4) { conditional_type(Types) },
(5) closing_comma, [eol],
(6) statements(Context1, InnerContext, Statements),
(7) [end], !,
(8) { chain_context(Context1, InnerContext,

NewContext) },
(9) { Loop = while(Conditional, Statements) }.

Figure 4. The DCG definition of a while statement

syntax tree that belongs to the while statement: a node that
contains the conditional and encapsulates nested statements
as a list of branches.

Type inference As MatLab is a dynamically-typed lan-
guage, variables are not explicitly associated with types. In
contrast, their type is determined run-time using the im-
plicit type of the initializer or assignment expression, and
that type is changed as necessary whenever another expres-
sion demands so. In our case, a simplifying (but scarcely
restrictive) “same type” assumption is made, that is, a vari-
able cannot have incompatible types in the same MatLab
function. For instance, if a variable i has been concluded
to have the type integer, it cannot be part of an expression
where it should be interpreted as a string, which is not more
general than integer.

Having made the “same type” assumption, the com-
piler uses a domain narrowing technique, common to con-
straint logic programming (CLP), to infer the type of a vari-
able. Once a variable has been introduced, it is associated
with a type domain. Initially, the domain contains all pos-
sible MatLab types. Types are classified into

• intrinsic types; boolean, integer, real and complex

• primitive types; all intrinsic types and string

• matrices and vectors, which are made up of elements
of the same intrinsic type



Narrowing occurs in any of the following two situations:

1. Direct assignment. The variable is assigned an expres-
sion. For instance, the assignment a = 1 + 2 allows the
compiler to infer that a is an integer, a real or a com-
plex number; a = b + 4 leads the compiler to conclude
a is a real (or complex) matrix if b is a real matrix.

2. Implicit from context. The variable is used in an ex-
pression in a context that allows deductions to be
made as to the type of the variable. For instance, the
assignment a(6,b) = 11 implies a is a matrix because
only matrices can be accessed with two indices. Sim-
ilarly, the compiler can conclude that b is an integer
or an integer vector: other types are not allowed as
indexers.

In each case, the domain of the variable is the inter-
section of its current domain and the domain deduced from
the expression. If the domain of a variable becomes the
empty domain, the compilation halts with an error. Ide-
ally (and in most real-world situations where code is well-
formed) the domain reduces to a single type by the end of
the compilation unit. However, notice that there is a hierar-
chy of types: e.g. the type integer is a special kind of 1-by-
1 matrix. As the type inference algorithm excludes types
only when they are inappropriate, choosing the simplest
type will not harm code semantics. In particular, counters
or indexers will not be treated as general matrices.

As previously seen, inferring the type of an initial-
izer or an assignment requires inspection of the assigned
expression. This is recursive: the type of the expression it-
self is determined chiefly by the type of its subexpressions.
The recursion is terminated by constants (which have a def-
inite type) and variables (whose type may also depend on
other external expressions). MatForce uses Prolog back-
tracking to infer the possible types of an expression. First,
an expression type tree it built, which is almost identical to
the original expression abstract syntax tree except that con-
stants are replaced by their type and variables by (uninstan-
tiated) Prolog variables. Second, each variable is instanti-
ated with a type from its domain. Third, the resultant type
tree, which now has no variables (i.e. it is ground), is sim-
plified into a single leaf using operator and function type
transformation rules (e.g. real + complex = complex). The
remaining leaf constitutes the type of the entire expression.
Notice that there are multiple ways the second step can be
performed (i.e. it leaves Prolog choice points) and that the
simplification may fail. These, however, seamlessly fit into
the Prolog execution model.

Let us consider an example in which two variables
a and b have the type domain [boolean,integer] and [in-
teger,float], respectively. In order to infer the type of the
expression a + b + 1, MatForce first builds the following
type tree: A + B + integer. Second, the variables A and B
are instantiated with types from their domain, e.g. boolean
and integer. Third, a simplification is attempted using the

ground term boolean + integer + integer. However, the op-
erator + cannot take arguments of type boolean and integer.
Consequently, execution backtracks, and a second instanti-
ation is attempted. The substitution A ← integer, B ←
integer is successful, and the type integer is inferred. Sim-
ilarly, A ← integer, B ← float is a valid instantiation pat-
tern, yielding the expression type float. As a result, the ex-
pression will have the type domain [integer, float]. In par-
allel, the domain of A will have been narrowed to [integer],
as its being boolean would not produce a valid expression
in terms of type.

It is important to emphasize that a particular type in-
ferred for an entire expression depends on the variable type
substitution pattern in that expression. When all inferred
types are aggregated into a single type domain, informa-
tion in the actual substitution pattern is lost. In order to
overcome this phenomenon, possible outcomes for the type
of an expression are also recorded as Prolog rules in terms
of the type of relevant variables. When the final type for
the expression is required at the code generation stage, each
candidate type in the domain is tested against these rules. If
the domain of a relevant variable has been found to be actu-
ally narrower than used to infer the type of the expression,
the corresponding types in the type domain of the expres-
sion will be dropped.

Code generation In the last compilation stage, the type-
annotated abstract syntax tree is converted into a series of
C++ expressions. The compiler takes operator precedence
into account in order to use the least number of parenthe-
ses for improved legibility. Some of the simplifications
and optimizations at this stage include using increment and
decrement operators, simultaneous arithmetic and assign-
ment (e.g. add-and-assign), and iterators in loops.

Although the current implementation uses C++ as the
target language, the code generator is a relatively minor
part of MatForce. With small or medium effort, the gen-
erator can be fitted to other programming languages, such
as C# or Java.7 The entire code generation process is driven
by DCG rules, which can, in most part, be easily fitted to
the needs of a different language.

6 The utility library

The utility library, written in C++, exposes a strongly-
typed class hierarchy of different types of vectors, matri-
ces and 3-dimensional arrays. Matrix types are differen-
tiated based on the intrinsic type they store, which can
be unsigned integer, signed integer, double-precision real
or complex numbers.8 Generic functionality, common to
more types and shapes, is implemented in corresponding
storage and matrix classes. Operators are overloaded to
provide a convenient way to express arithmetic operations.

7However, generating code in another language assumes a correspond-
ing utility library in that language.

8The utility library has limited support for multiple-precision real ma-
trices if compiled with GMP [3] support.



C++ utility library

optimized BLAS

LAPACK

compiled MatLab source
embedded in host application code

Figure 5. The structure of an application compiled with
MatForce

While simple operations (such as computing the element-
wise minimum of two matrices) are implemented directly
in C++, more complex operations (such as matrix multipli-
cation or inverse) are performed by the underlying linear
algebra library.

The major design goals of the utility library were sup-
port for extension at the C++ level and efficiency of com-
piled C++ code, which is the rationale behind intensive use
of operator overloading. Matrix arithmetic can be read in
familiar notation and additional required code can hence be
easily interleaved.

7 The linear algebra library

The linear algebra library, written in Fortran, serves as
the fundamental layer for high-performance computation.
It contains efficient implementation of such operations as
matrix multiplication, matrix decomposition or eigenvalue
computation. The linear algebra library itself comprises
two layers: the lower BLAS (Basic Linear Algebra Sub-
routines) layer and the higher LAPACK (Linear Algebra
PACKage) [7] layer. The most critical part of the library in
terms of efficiency is the BLAS layer, which implements
basic vector, matrix-vector and matrix-matrix operations,
all of which are used both by the LAPACK layer and the
C++ utility library (Figure 5). ATLAS [1, 15], which is
an automatically tuned BLAS (and partial LAPACK) im-
plementation, is used to exploit the specific features of the
target computer’s hardware. ATLAS and (the unoptimized
part of) LAPACK have been combined in a self-contained
dynamically-linked library, which can also be used inde-
pendently of MatForce.

8 Conclusions and future work

In this paper, a type-inferring compiler that converts Mat-
Lab scripts to C++ source code as well as an accompanying
utility library has been presented. Albeit it uses optimized
open-source BLAS and LAPACK routines written in For-
tran for the sake of efficiency, the compiled code does not
have any external dependencies on third party proprietary
libraries. The generated C++ code is properly annotated

with types, using primitive types whenever possible. The
code is fully legible from a human perspective using matrix
and vector types as well as related operators, which allows
further additions or modifications to the translated code.

Future work includes more effective (potentially user-
guided) type narrowing, a user interface to control the com-
pilation process, support for a greater proportion of Mat-
Lab functions in the supplemental C++ utility library, and a
study of comparative performance w.r.t. other approaches.

References

[1] Automatically Tuned Linear Algebra Software, http://math-
atlas.sourceforge.net/

[2] Catalytic MCS Family: MATLAB to C Synthesis,
http://www.catalyticinc.com/

[3] The GNU Multiple-Precision Library, http://gmplib.org/
[4] SourceForge.net project site of MatForce,

http://matforce.sourceforge.net/
[5] SWI-Prolog, http://www.swi-prolog.org/
[6] George Almasi, David A. Padua, MaJIC: A Matlab Just-In-

Time Compiler, in S. P. Midkiff et al. (eds.), LCPC2000,
LNCS 2017, 68-81, 2001

[7] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, D. Sorensen, LAPACK Users’ Guide (Third
Edition), Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1999, ISBN 0-89871-447-8 (paperback)

[8] John W. Eaton, Octave: Interactive language for numerical
computations, 2007,
http://www.gnu.org/software/octave/doc/interpreter/

[9] Daniel Elphick, Michael Leuschel, Simon Cox, Partial
Evaluation of MATLAB, in F. Pfenning and Y. Smaragdakis
(eds.), GPCE 2003, LNCS 2830, pp344–363, 2003

[10] Y. Keren, MATCOM: A MATLAB to C++ Translator and
Support Libraries, Israel Institute of Technology, 1995

[11] S. Pawletta, T. Pawletta, W. Drewelow, P. Duenow, M.
Suesse, A MATLAB toolbox for distributed and parallel
processing, in C. Moler, S. Little, ed., Proc. of the Mat-
lab Conference, Cambridge, MA, MathWorks Inc., October
1995

[12] Jens Rcknagel, An Octave Type Estimator – Essential Part
of an Octave to C++ Compiler, Thesis, Technical Univer-
sity Ilmenau, Faculty of Computer Science and Automa-
tion, Department of System and Control Theory, Ilmenau,
April 12, 2005, http://www.stud.tu-ilmenau.de/˜ rueckn/

[13] C. M. Sperberg-McQueen, A brief introduction to
definite clause grammars and definite clause transla-
tion grammars, A working paper prepared for the
W3C XML Schema Working Group, 18 July 2004,
http://www.w3.org/People/cmsmcq/2004/lgintro.html

[14] Leon Sterling, Ehud Shapiro, The Art of Prolog: Advanced
Programming Techniques, MIT Press, Cambridge, Mas-
sachusetts, 1994

[15] R. Clint Whaley, Antoine Petitet, Minimizing devel-
opment and maintenance costs in supporting persis-
tently optimized BLAS, Software: Practice and Experi-
ence, volume 35, number 2, pp101–121 February 2005,
http://www.cs.utsa.edu/˜ whaley/papers/spercw04.ps


