
MATFORCE: USING AUTOMATED SOURCE-TO-SOURCE
TRANSLATION IN DEVELOPING C++ APPLICATIONS BASED ON

MATLAB CODE

Levente Hunyadi Miklós Nagy
hunyadi@aut.bme.hu mikee85@gmail.com

PhD student MSc student
Budapest University of Technology and Economics
Department of Automation and Applied Informatics

Abstract

MatLab is an essential tool in high-productivity development of applications that in-
volve much scientific computation. However, for the sake of efficiency and homo-
geneity with other parts of the code, it is often necessary to convert MatLab code
into C++, which is a tedious and error-prone task if performed manually. The au-
thors present a tool named MatForce that automatically converts MatLab functions
into C++ code, producing human-readable, extensible C++ sources that can in turn
be fitted to the needs of the encapsulating application.

1 Motivation

MatLab [3] is the de-facto language of technical computing, it allows programmers to
write algorithms in familiar mathematical notation as well as visualize their results in
a straightforward manner. On one hand, MatLab has built-in support for matrix oper-
ations and a myriad of mathematical functions ranging from trigonometric functions
to fast Fourier transformation. On the other hand, data can be displayed graphically
and interactive tools allow manipulating graphs to achieve results that reveal the most
information. Both of these aspects contribute to ease of use and quick initial discov-
ery of potential pitfalls. However, beyond the initial prototyping phase, one is often
faced with the need to integrate the developed algorithms into an existing application,
often with subtle changes.

Our work has been motivated by developing a link capacity dimensioning algo-
rithm as part of a mobile telecommunication network designer tool. Traffic in a radio
network is often transported over an ATM network in which each unit of traffic is
carried in a so-called Virtual Channel Connection (VCC). VCCs are classified into
real-time (e.g. for voice), non-real-time (e.g. for packet-based traffic) and other types
(e.g. for high-speed download packet access (HSDPA) traffic), each having different
Quality of Service (QoS) requirements. However, different types of traffic affect one
another due to the limited capacity of the physical link. The goal of the algorithm



was to find the minimal capacity for each VCC for which all QoS requirements are
satisfied given a general traffic mix defined by the user.

As traffic is frequently modeled as a Markov chain where each state is associated
with a given traffic rate, matrix operations were inherent in the dimensioning algo-
rithm. Particular examples included matrix inversion, matrix factorization as part of
solving linear systems of equations, submatrix extraction and Kronecker operations
for composing sets of states. While having a sufficient level of abstraction in or-
der to provide easy access to data stored in an object-oriented fashion, the algorithm
was expected to run efficiently, avoiding temporary copies and array reordering (es-
pecially for the sake of transposing the matrix) whenever possible. Consequently,
our goals were threefold: (1) avoiding laborious manual conversion of code given as
MatLab functions; (2) seamless integration with existing C++ code and (3) generat-
ing highly efficient code. Direct use of linear algebra libraries, such as LAPACK [7]
or ATLAS [16], was inadequate due to their low level of abstraction, while other tools,
such as the compiler shipped with MatLab, were not suitable as they would produce
coarsely-grained execution units (DLLs wrapping MatLab code) that could not utilize
C++ objects specific to our domain.

In order to meet the outlined requirements, we propose MatForce [10, 4], an open-
source tool comprising of a compiler and a utility library, which translates MatLab
code into human-readable C++ source code. The compiler features a simple yet pow-
erful type inference algorithm that uses primitive as well as compound types in com-
piled code. The resultant C++ code is dependent only on the utility library that con-
tains definitions for various matrix types, shapes and operations (such as product of
two double-precision matrices or Fourier-transform of a vector), which makes com-
piled code succinct and sufficiently abstract. The utility library links against freely
available BLAS and LAPACK [7] linear algebra routines written in Fortran but no other
third-party libraries. As a result, the compilation process yields intuitive, type-safe,
high-performance C++ source code, which the programmer can modify at will with-
out relying on external heavy-weight libraries.

The rest of the paper is structured as follows. Section 2 gives the motivation for
using type inferring code translation as opposed to other approaches and surveys re-
lated work. Sections 4, 5 and 6 deal with the details of the MatForce compiler, the
utility library and the (external) linear algebra library, respectively. The paper ends
with Section 7, which summarizes results and drafts possible future work. The reader
is assumed to have a basic knowledge of the MatLab language.

2 Related work

There have been attempts at increasing MatLab performance by means of partial eval-
uation [9], just-in-time compilation [6], parallelization [12], direct compilation [11]
and type estimation [13, 2].

Partial evaluation is a technique for program optimization by specialization, con-
straining code to a particular set of possible inputs, producing the so-called residual
program. The MatLab partial evaluator described in [9] transforms a MatLab abstract
syntax tree into a simpler but equivalent form by deducing type, shape and value range



information from expressions, evaluating static subexpressions and eliminating dead
code whenever possible as well as unrolling loops. This partial evaluation can sub-
stantially increase performance but produces MatLab code and hence can only serve
as a possible preprocessing step in our scenario.

MaJIC [6] is a just-in-time compiler targeted at speeding up MatLab execution in
an interactive environment. The compiler comprises three constituents: an analyzer
that annotates code, a very fast code generator and a code repository that caches com-
piled code. Despite its effectiveness due to preallocating temporary arrays, eliminat-
ing unnecessary temporaries and unrolling loops, the just-in-time scheme is heavily
dependent on run-time information and is therefore not suited to our needs.

Direct compilation speeds execution by translating to a compiled language such as
C or C++ but by using a dynamic typing scheme. As such, it is a simple approach
that may significantly speed execution by compiling control structures but it does
not address type safety, nor can it exploit the speed gain from type specialization.
Nevertheless, compiled code can bear close resemblance to the original, facilitating
future extension.

In the case of type estimation (or type inference), variables are assigned well-
defined types, allowing code to be translated into a strongly-typed language. As a re-
sult, type inference combined with code translation meets our demands both in terms
of speed and type safety. Not only does type inference enable aggressive optimization
of generated C++ code (by allowing cross-optimization between hosting application
and MatLab algorithm) but also decreases the heterogeneity of a complex system by
making it possible to use a single programming language.

In [13] a type estimator written for the Octave [8] language is described, which is
very similar to MatLab in syntax and semantics. The type estimation scheme is based
on flow graphs to guess the intrinsic type, size and value range of Octave matrices in
an iterative process. This information is stored as a triplet and attached to each vari-
able in an Octave program. Once the Octave program is annotated, a corresponding
C++ program can be generated.

3 Overview

The MatForce system comprises of three easily identifiable parts. The compiler per-
forms the MatLab to C++ translation with type inference, yielding C++ code. The
utility library contains the implementation of matrix operations. The C++ compiler
translates both the utility library and the C++ source code produced by the MatForce
compiler into object files. The linker binds the object files to the high-performance
linear algebra library, which carries out computation-intensive operations. (Figure 1)

4 The compiler

The MatLab code compiler, written in SWI-Prolog [15, 5], is the major constituent of
the system. Compilation is done in four stages: tokenization, parsing, type inference
and code generation.



Figure 1: The MatLab to C++ compilation and link process

Tokenization At this stage, m-files are read and converted into a stream of tokens.
The term token may refer to an integer, a real number, a keyword, a string, a literal,
a symbol (which corresponds to a MatLab operator), a comment or a newline. Line
folding is also performed at this stage.

Parsing During the parsing process, tokens are interpreted in their context and an
abstract syntax tree (AST) is built. Each m-file contains one or more functions, each
of which comprises multiple statements. A statement may be a control statement
(return, break, global etc.), an assignment, an if, a while or a for statement, or a
function call. The exact semantics of each statement is defined by means of the DCG
[14] formalism, which is similar to BNF and is common to Prolog-flavor languages.

Type inference As MatLab is a dynamically-typed language, variables are not ex-
plicitly associated with types. In contrast, their type is determined run-time using the
implicit type of the initializer or assignment expression, and that type is changed as
necessary whenever another expression demands so. In our case, a simplifying (but
scarcely restrictive) “same type” assumption is made, that is, a variable cannot have
incompatible types in the same MatLab function. For instance, if a variable i has been
concluded to have the type integer, it cannot be part of an expression where it should
be interpreted as a string, which is not more general than integer.

Having made the “same type” assumption, the compiler uses a domain narrowing
technique, common to constraint logic programming (CLP), to infer the type of a
variable. Once a variable has been introduced, it is associated with a type domain.
Initially, the domain contains all possible MatLab types. Types are classified into

• intrinsic types; boolean, integer, real and complex

• primitive types; all intrinsic types and string

• matrices and vectors, which are made up of elements of the same intrinsic type

Narrowing occurs in any of the following two situations:

1. Direct assignment. The variable is assigned an expression. For instance, the
assignment a = 1 + 2 allows the compiler to infer that a is an integer, a real or a



complex number; a = b + 4 leads the compiler to conclude a is a real or complex
matrix if b is a real matrix.

2. Implicit from context. The variable is used in an expression in a context that
allows deductions to be made as to the type of the variable. For instance, the as-
signment a(6,b) = 11 implies a is a matrix because only matrices can be accessed
with two indices. Similarly, the compiler can conclude that b is an integer or an
integer vector: other types are not allowed as indexers.

In each case, the domain of the variable is the intersection of its current domain
and the possible domain deduced from the expression. If the domain of a variable
becomes the empty domain, the compilation halts with an error. Ideally the domain
reduces to a single type by the end of the compilation unit. If not, the hierarchy of
types (e.g. the type integer is a special kind of 1-by-1 matrix) can be exploited to
choose the simplest type that does not harm code semantics.

Code generation In the last compilation stage, the type-annotated AST is converted
into a series of C++ expressions. The compiler takes operator precedence into ac-
count in order to use the least number of parentheses for improved legibility. Some of
the simplifications and optimizations at this stage include using increment and decre-
ment operators, simultaneous arithmetic and assignment (e.g. add-and-assign), and
iterators in loops.

5 The utility library

The utility library, written in C++, exposes a strongly-typed class hierarchy of dif-
ferent types of vectors, matrices and 3-dimensional arrays. Matrix types are differ-
entiated based on the intrinsic type they store, which can be unsigned integer, signed
integer, double-precision real or complex numbers. Generic functionality, common to
more types and shapes, is implemented in corresponding storage and matrix classes.
Operators are overloaded to provide a convenient way to express arithmetic opera-
tions. While simple operations (such as computing the element-wise minimum of
two matrices) are implemented directly in C++, more complex operations (such as
matrix multiplication or inverse) are performed by the underlying linear algebra li-
brary.

6 The linear algebra library

The linear algebra library, written in Fortran, serves as the fundamental layer for
high-performance computation. It contains efficient implementation of such oper-
ations as matrix multiplication, matrix decomposition or eigenvalue computation.
The linear algebra library itself comprises two layers: the lower BLAS (Basic Linear
Algebra Subroutines) layer and the higher LAPACK (Linear Algebra PACKage) [7]
layer. The most critical part of the library in terms of efficiency is the BLAS layer,
which implements basic vector, matrix-vector and matrix-matrix operations, all of



which are used both by the LAPACK layer and the C++ utility library. ATLAS [1, 16],
which is an automatically tuned BLAS (and partial LAPACK) implementation, is used
to exploit the specific features of the target computer’s hardware.

7 Conclusions and future work

In this paper, a type-inferring compiler that converts MatLab scripts to C++ source
code as well as an accompanying utility library has been presented. Albeit it uses
optimized open-source BLAS and LAPACK routines written in Fortran for the sake
of efficiency, the compiled code does not have any external dependencies on third
party proprietary libraries. The generated C++ code is properly annotated with types,
using primitive types whenever possible. The code is fully legible from a human
perspective using matrix and vector types as well as related operators, which allows
further additions or modifications to the translated code.

Future work includes a user interface to control the compilation process, support
for a greater proportion of MatLab functions in the supplemental C++ utility library,
and a study of comparative performance w.r.t. other approaches.

References
[1] Automatically tuned linear algebra software. http://math-atlas.sourceforge.net/, 2008.

[2] Catalytic MCS family: MATLAB to C synthesis. http://www.catalyticinc.com/, 2008.

[3] MATLAB: The language of technical computing. http://www.mathworks.com/products/matlab/,
2008.

[4] SourceForge.net project site of MatForce. http://matforce.sourceforge.net/, 2008.

[5] SWI-Prolog. http://www.swi-prolog.org/, 2008.

[6] George Almasi and David A. Padua. MaJIC: A Matlab just-in-time compiler. In S. P. Midkiff et al., editors, LCPC2000
(LNCS 2017), pages 68–81, 2001.

[7] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA, third edition edition, 1999. ISBN 0-89871-447-8 (paperback).

[8] John W. Eaton. Octave: Interactive language for numerical computations. http://www.gnu.org/software/
octave/doc/interpreter/, 2007.

[9] Daniel Elphick, Michael Leuschel, and Simon Cox. Partial evaluation of MATLAB. In F. Pfenning and
Y. Smaragdakis, editors, GPCE 2003 (LNCS 2830), pages 344–363, 2003.

[10] Levente Hunyadi. MatForce: Supporting rapid algorithm development by automated translation of MatLab prototypes
into C++. In IASTED International Conference on Software Engineering, 2008. (in print).

[11] Y. Keren. MATCOM: A MATLAB to c++ translator and support libraries. Technical report, Israel Institute of
Technology, 1995.

[12] S. Pawletta, T. Pawletta, W. Drewelow, P. Duenow, and M. Suesse. A MATLAB toolbox for distributed and parallel
processing. In C. Moler and S. Little, editors, Proceedings of the Matlab Conference, Cambridge, MA, October 1995.
MathWorks Inc.

[13] Jens Rücknagel. An octave type estimator – essential part of an octave to c++ compiler. Master’s thesis, Technical
University Ilmenau, Faculty of Computer Science and Automation, Department of System and Control Theory, April
12 2005.

[14] C. M. Sperberg-McQueen. A brief introduction to definite clause grammars and definite clause translation grammars (a
working paper prepared for the W3C XML Schema Working Group). http://www.w3.org/People/cmsmcq/
2004/lgintro.html, July 18 2004.

[15] Leon Sterling and Ehud Shapiro. The Art of Prolog: Advanced Programming Techniques. MIT Press, Cambridge,
MA, 1994.

[16] R. Clint Whaley and Antoine Petitet. Minimizing development and maintenance costs in supporting persistently
optimized BLAS. Software: Practice and Experience, 35(2):101–121, February 2005.


